«Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое вещество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот веществ между живой и неживой частями, представляют собой экологическую систему, или экосистему» (Ю.Одум, 1986).
Главным предметом исследования при экосистемном подходе в экологии становятся процессы трансформации вещества и энергии между биотой и физической средой, т.е. возникающий биогеохимический круговорот веществ в экосистеме в целом (рис.1). Это позволяет дать обобщенную интегрированную оценку результатов жизнедеятельности сразу многих отдельных организмов многих видов, так как по биогеохимическим функциям, т.е. по характеру осуществляемых в природе процессов превращения вещества и энергии, организмы более однообразны, чем по своим морфологическим признакам и строению. Например, все высшие растения потребляют одни и те же вещества, все они используют свет и благодаря фотосинтезу, образуют близкие по составу органические вещества и выделяют кислород.
В настоящее время концепция экосистемы – одно из наиболее важных обобщений биологии – играет весьма важную роль в экологии. Во многом этому способствовали два обстоятельства, на которые указывает Г.А. Новиков (1979): во-первых, экология как научная дисциплина созрела для такого рода обобщений и они стали жизненно необходимы, а во-вторых, сейчас как никогда остро встали вопросы охраны биосферы и теоретического обоснования природоохранных мероприятий, которые опираются прежде всего на концепцию биотических сообществ – экосистем. Кроме того, как считает Г.А. Новиков, распространение идеи экосистемы способствовала гибкость самого понятия, так как к экосистемам можно относить биотические сообщества любого масштаба с их средой обитания – от пруда до Мирового океана, и от пня в лесу до обширного лесного массива, например тайги. В связи с этим выделяют: микроэкосистемы (подушка лишайника и т.п.), мезоэкосистемы (пруд, озеро, степь и др.), глобальную экосистему (биосфера Земли) или экосферу – интеграция всех экосистем мира.
Типичным примером экосистемы может быть подушка лишайника на стволе дерева. Выше мы уже приводили пример классического мутуализма, к которому пришли водоросли и грибы через паразитизм последних. Продуценты здесь – симбиотические водоросли, консументы – различных мелких членистоногих и др. Гифы грибов и большинство микроскопических животных выступают здесь и в роли редуцентов, живущих за счет тканей отмерших водорослей.
Схема переноса вещества (сплошная линия) и энергии (пунктирная линия) в природных экосистемах.
Замкнутость круговорота в такой системе не велика: часть продуктов распада выносится за пределы лишайника дождевыми водами, часть животных мигрирует в другие местообитания.
Границы этой экосистемы очерчены границами лишайника, но ее существование будет достаточно стабильным, если вынос будет компенсироваться поступлением вещества. Но есть экосистемы, в которых внутренний круговорот вещества вообще малоэффективен – реки, склоны гор – здесь стабильность поддерживается только перетоком вещества извне. Многие системы достаточно автономны – пруды, озера, океан, леса и др. Но даже биосфера Земли часть веществ отдает в космос и получает вещества из космоса.
Таким образом, природные экосистемы – это открытые системы: они должны получать и отдавать вещества и энергию.
Запасы веществ, усвояемые организмами и, прежде всего, продуцентами, в природе небезграничны. Если бы эти вещества не использовались многократно, а точнее не были бы вовлечены в этот вечный круговорот, то жизнь на Земле была бы вообще невозможна. Такой «бесконечный» круговорот (рис. 1) биогенных компонентов возможен лишь при наличии функционально различных групп организмов, способных осуществлять и поддерживать поток веществ, извлекаемых ими из окружающей среды.
Для поддержания круговорота веществ в экосистеме необходимы неорганические молекулы в усвояемой для продуцентов форме, консументы, питающиеся продуцентами и другими консументами, а также редуценты, восстанавливающие органические вещества снова до неорганических молекул для питания продуцентов (рис. 2).
С точки зрения пищевых взаимодействий организмов, трофическая структура экосистемы делится на два яруса: 1) верхний – автотрофный ярус, или «зеленый пояс», включающий фотосинтезирующие организмы, создающие сложные органические молекулы из неорганических простых соединений, и 2) нижний – гетеротрофный ярус, или «коричневый пояс» почв и осадков, в котором преобладает разложение отмерших органических веществ снова до простых минеральных образований. Однако, чтобы разобраться в сложных биологических взаимодействий в экосистеме, следует выделить ряд компонентов, об экологической роли которых мы уже говорили выше: 1) неорганические вещества (С, N, CO2, H2O, P, O и др.), участвующие в круговоротах; 2) органические соединения (белки, углеводы, липиды, гумусовые вещества и др.), связывающие биотическую и абиотическую части; 3) воздушную, водную и субстратную среду, включающую абиотические факторы; 4) продуцентов – автотрофных организмов, в основном зеленых растений, способных производить пищу из простых неорганических веществ; 5) консументов, или фаготрофов (пожирателейонсументов, или фаготрофов ()нганических внществ; 5)кие факторы; 4) продуцентов — автотрофных ической роли которых мы уже гово), — гетеротрофы, в основном животные, питающиеся другими организмами или частицами органического вещества; 6) редуцентов, или сапротрофов (питающихся гнилью), — гетеротрофных организмов, в основном бактерий и грибов, получающих энергию путем разложения отмершей или поглощения растворенной органики. Сапротрофы высвобождают неорганические элементы питания для продуцентов и, кроме того, являются пищей для консументов.
Пищевая цепь в озере в сильно упрощенном виде: сплошные линии со стрелками направлены от пищи к консументам; пунктирные линии со стрелками отражают деятельность деструкторов (по П. Арессу).
Продуцирование и разложение в природе.
Фотосинтезирующие организмы, и лишь отчасти хемосинтезирующие, создают органические вещества на Земле – продукцию – в количестве 100 млрд т/год и примерно такое же количество веществ должно превращаться в результате дыхания растений в углекислый газ и воду. Однако этот баланс неточен, так как известно, что в прошлые геологические эпохи создавался избыток органического, в особенности 300 млн лет тому назад, что выразилось в накоплении в осадочных породах угля. Человечество использует это энергетическое сырье.
Этот избыток образовался вследствии того, что в соотношении О2/СО2 баланс сдвинулся в сторону СО2 и заметная часть продуцированного вещества, хотя и очень небольшая, не расходовалась на дыхание и не разлагалась, а фоссилизировалась (окаменевала) и сохранялась в осадках. Сдвижение баланса в сторону повышения содержания кислорода около 100 млн лет назад сделало возможным эволюцию и существование высших форм жизни.
Без процессов дыхания и разложения, так же как и без фотосинтеза, жизнь на Земле была бы невозможна.
Дыхание – это процесс окисления, который еще в древности справедливо сравнили с горением. Благодаря дыханию как бы «сгорает» накопленное при фотосинтезе органическое вещество.
Итак, дыхание – процесс гетеротрофный, приблизительно уравновешивающий автотрофное накопление органического вещества. Различают аэробное, анаэробное дыхание и брожение.
Аэробное дыхание – процесс, обратный фотосинтезу, где окислитель, газообразный кислород присоединяет водород. Анаэробное дыхание происходит обычно в бескислородной среде и в качестве окислителя служат другие неорганические вещества, например сера. И наконец, брожение – такой анаэробный процесс, где окислителем становится само органическое вещество.
Посредством процесса аэробного дыхания организмы получают энергию для поддержания жизнедеятельности и построения клеток. Бескислородное дыхание – это основа жизнедеятельности сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие). Аэробное дыхание превосходит, и значительно, анаэробное в скорости.
Если поступление детрита (частичек отмершей органики) в почву или в донный осадок происходит в больших количествах, то бактерии, грибы, простейшие быстро расходуют кислород на его разложение, которое резко замедляется, но не останавливается вследствие «работы» организмов с анаэробным метаболизмом.
Итак, в целом, можно утверждать, что происходит некоторое отставание гетеротрофного разложения от продуцирования во времени. И, как было подчеркнуто выше, такое соотношение наблюдается на уровне биосферы. «Отставание гетеротрофной утилизации продуктов автотрофного метаболизма есть, следовательно, одно из важнейших свойств экосистемы»
(Ю. Одум, 1975). Однако в результате деятельности человека это свойство находится под угрозой и прежде всего из-за непомерного потребления кислорода огромными двигателями и другими аппаратами, которое может привести к снижению продукции.
Разложение детрита путем его физического размельчения и биологического воздействия и доведения его сапрофагами до образования гумуса, гумификация, идет относительно быстро.
Однако последний этап, минерализация гумуса, — процесс медленный, обусловливающий запаздывание разложения по сравнению с продуцированием.
Кроме биотических факторов, в разложении принимают участие и абиотические (пожары, которые можно считать «агентами разложения»). Но если бы мертвые организмы не разлагались бы гетеротрофными микроорганизмами и сапрофагами, для которых они служат пищей, все питательные вещества оказались бы в мертвых телах и никакая новая жизнь не могла бы возникать.
Гомеостаз экосистемы.
Гомеостаз – способность биологических систем – организма, популяции и экосистем – противостоять изменениям и сохранять равновесие. Исходя из кибернетической природы экосистем – гомеостатический механизм – это обратная связь. Например, у пойкилотермных животных изменение температуры тела регулируется специальным центром в мозгу, куда постоянно поступает сигнал обратной связи, содержащий данные об отклонении от нормы, а от центра поступает сигнал, возвращающий температуру к норме. В механических системах аналогичный механизм называют сервомеханизмом, например, термостат управляет печью.
Для управления экосистемами не требуется регуляция извне – это саморегулирующаяся система. Саморегулирующий гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов. Один из них – субсистема «хищник — жертва» (рис. 3.). Между условно выделенными кибернетическими блоками управления осуществляется посредством положительных и отрицательных связей. Положительная обратная связь «уменьшает отклонение», например увеличивает чрезмерно популяцию жертвы. Отрицательная обратная связь «уменьшает отклонение», например, ограничивает рост популяции жертвы за счет увеличения численности популяции хищников. Эта кибернетическая схема (рис. 3а) отлично иллюстрирует процесс коэволюции в системе «хищник — жертва», так как в этой «связке» развиваются и взаимные адаптационные процессы (см. рис. 3б) – область отрицательных связей, а при нарушении системы начинают преобладать обратные положительные связи, что может привести к гибели системы.
Наиболее устойчивы крупные экосистемы и самая стабильная из них – биосфера, а наиболее неустойчивы – молодые экосистемы. Это объясняется тем, что в больших экосистемах создается саморегулирующий гомеостаз за счет взаимодействия круговоротов веществ и потоков энергии (Ю.Одум, 1975).
Рис. 3. Элементы кибернетики (из Ю.Одум, 1975, с изменениями): а- взаимодействие положительной (+) и отрицательной (-) обратных связей в системе хищник – жертва; б- представление о гомеостатическом плато, в пределах которого поддерживается относительное постоянство вопреки условиям, вызывающим отклонения.