Нерв жүйесінің жалпы физиологиясы. Нерв (жүйке) жүйесі — ақпаратгы жылдам жеткізетін және баскаруды жүзеге асыратын күрделі үйымдасқан өрі жоғары дәрежеде маманданған жүйе. Оның негізгі құрылымдық бірлігі — нерв клеткасы — нейрон.
Адам организмі күрделі де өзара тығыз байланысқан жүйелерден, мүшелерден және ұлпалардан тұратьн жоғары ұйымдасқан биологиялық супержүйе болып есептеледі. Осы күрделі қүрылымда ерекше ролді орталық нерв жүйесі — ми мен жұлын атқарады. Ол адам организміндегі барлық клеткаларды, ұлпаларды, мүшелерді, бұлардың жүйелерін өзара байланыстырып, функциональдық біртұтастықта ұстайды. Орталық нерв жүйесінің қызметтері арқылы барлық мүшелер мен ұлпаларда болатын рецепторлар тітіркенген кезде туатын афферентті (орталыкқа тепкіш) импульстер қабылданады, олардың анализі мен синтезі жүреді (өңделеді) және түрлі шеткі мушелердің әрекетін тудыратын немесе тоқтататын, болмаса олардыңтонусын сақтауға көмектесетін эфференттік (орталықтан тепкіш) импульстер пайда болады. Орталық нерв жүйесі жеке организмнің қоршаған ортаға бейімделуін, оның барлык қызметтерінің ең жетілген реттелуін және үйлесімді, бірлескен түрде іске асуын қамтамасыз етеді.
Орталық нерв жүйесінің түрлі мүшелер әрекетін нақты бақылауы нерв орталықтары мен шеткі органдар арасында екі жақты байланыс болғандықтан іске асады. Қандай да болмасын эфференттік импульстерден орындалатын өрекеттен жұмыс атқарушы мүшелердегі рецепторлар тітіркенеді де. афференттік импульстер туады; ал олар тиісті әрекеттің нәтижесі туралы орталық нерв жүйесін хабарлайды (кері афферентация). Адамның да психикалық өрекеті мен басқа да барлық әрекеттері орталық нерв жүйесінде жүретін процестерге негізделген. Айтылып отырған аса жауапты да құрделі қызметте билеуші рөл ми үлесіне тиеді.
Мидың осындай бүкіл организмдегі тіршілік процестерін ең жоғаргы және нәзік интеграциялаушы мүше ретіндегі көзқарастың қалыптасуында көптеген физиологтардың, олардың ішінде И. М. Сеченов пен И. П. Павловтың атқарған рөлдері айрықша.
И. М. Сеченов (Павлов оны «орыс физиологиясының атасы» деп атаған) организмнің қоршаған ортамен байланысы, оның түрлі әсерлерге қайтаратын барлық жауап реакциялары (рефлекстер) нерв жүйесі арқылы іске асатынын 1862 жылы «Ми рефлекстері» деп аталатын еңбегінде дәлелдеді. Осы жөне басқа еңбектерінде ол рефлекстің орталық буынындағы, яғни орталық нерв жүйесіндегі құбылыстар мен процестерді білу керек деген ғылыми идея ұсыңды.
И. П. Павлов И. М. Сеченовтың осы идеясын басшылыққа ала отырып, ми қызметін зерттеудің обьективтік өдісін (шартты рефлекстер әдісін) тауып, ғылымға ендірді. Әрі оны кеңінен қолдана отырып, жоғары нерв әрекетінің физиологиясьш жасап шықты. Түрлі мүшелердің шартты рефлекторлық реакцияларын бақылай, анализдей отырып, ол мидағы, оның ішіңде ми қыртысындағы нерв процестерінің (қозу мен тежелудің) ерекшеліктері, динамикасы, өзара әрекеттесуі туралы ғылыми нақты тұжырымдар жасады. Ми жұмысының принциптері мен заңдылықтарын анықтады.
Жоғары сатылы организмдерде осыншама аса үлкен рөлі бар нерв жүйесі ұзақ уақыттық тарихи дамудың жемісі. Эволюциялық дамудың ең ертедегі алғашқы этаптарында — бірклеткалы организмдерде нерв жүйесі болған жоқ. Оларда клетка ішіндегі өр түрлі процестерді реттейтін арнайы гуморальдық (сүйықтықтык) механизмдер ғана болады. Қарапайым көпклеткалыларда да клеткаішілік реттеу механизмдері сақталады және сонымен қатар химиялық заттар көмегімен іске асатын клеткааралық гуморальдық взара әрекеттесу қалыптасады. Бұл заттар — жеке клеткалардағы метаболизм процестерінің өнімдері. Олар клеткааралық кеңістіктерге өтеді де, басқа клеткалар мембранасының маманданған учаскелеріне әсер етіп, олардың (жарғақшасының) өткізгіштігін өзгертеді, клетка ішілік алмасу процестерін тиісті бағытқа реттейді.
Бірақ көп клеткалы организмдердің бұдан арғы күрделене түсуі ерекше, жылдам іске асатын реттеу мен басқару жүйелерінің қалыптасуын қажет етті. Міне осыдан нерв жүйесі пайда болды. Нерв жүйесінің эволюциясы қозғалу аппаратыньщ эволюциясымен қатар жүрді. Ол қозғалыссыз тіршілік ететін губкалардан басқа көпклеткалылардың бөрінде бар. Ең қарапайым нерв жүйесі диффуздық нерв торы болып есептеледі. Мұндағы озара тармақтары арқылы байланысқан арнайы нерв клеткалары рецепторларда пайда болған қозуды бұлшықет элементтеріне, ішкі мүшелерге жеткізеді. Диффуздық нерв торы әр түрлі тітіркендірулерге бөлшектенбеген біртұтас жүйе түрінде жауап қайтарады (мәселен, гидраның бүкіл денесі жиырылады).
Эволюция барысында қозғалу функциясының күрделенуі мен жетілуіне байланысты нерв жүйесінің бұл алғашқы типі кептеген өзгерістерге ұшырады. Соның бірі — әр түрлі маманданған нерв клеткалары белгілі бір орындарға жинақталады: қабылдағыш (сезгіш) нейрондар рецепторларға жақын манда, ал қозғағыш (мото) нейрондар өздері жабдықтайтын бұлшықет топтарының маңында орнығады. Осыдан түрлі нерв түйіндері (ганглийлер) түзіледі. Бұлар бір-бірімен нерв талшықтары арқылы байланысады. Құрттарда, буынаяқтыларда, моллюскаларда, тікентерілілерде болатын бұл жүйені ганглші, туйінді немесе тізбекті нерв жүйесі деп атайды.
Бұдан соңғы этапта хордалы немесе түтікті нерв жүйесі пайда болған. Хордалы жануарларда бүкіл орталық нерв жүйесі жануардың арқа жағында орналасқан түтіктен тұрады. Оның алдыңғы кеңейген жағы — миды, ал артқы цилиндр тәрізді болімі жұлынды құрайды. Омыртқалы жануарлар эволюциясындағы ерекшеліктің бірі — ми дамуы қарқыңды жүреді де оның ең жоғарғы бөлімі — ми сыңарларының қыртысы пайда болады.
Нерв жүйесінің эволюциялық дамып жетілу барысында басты рәлді ерекше элементтер — рецепторлар атқарады. Бұлардың дамуы негізіненекібағыттажүреді.
- Олардың тітіркендіруді сезгіштігі жоғарылады;
- Рецепторлардың белгілі бір топтары белгілі бір тітіркеңдірулерді қабылдауға бейімделді. Осыған байланысты түрлі сезцщүшелері пайда болды.
Нейрондар жіктелуі
Әр түрлі нейрондар денелерінен шығатын өсінділердің саны бірдей болмайды. Осыған орай оларды униполярлы, псевдоуниполярлы, биполярлы және мультиполярлы деп бөледі. Унипалярлы нейрондарда бір ғана өсінді болады. Мұндай нейрондар омыртқасыз жануарларда және омыртқалы жануарлардың эмбриональдық даму кезеңінде кездеседі. Псевдоуниполярлы нейрондарда да бір өсінді болады, бірак ол одан әрі екіғе тармақталып кетеді. Биполярлы нейрондарда екі өсінді бар. Мультиполярлы нейрон денесінен әдетте жуан, ұзын бір аксон және бірнеше дендриттер шығады. Бұлардың үлкендігі, пішіні, атқаратын қызметтері, орналасқан жерлері алуан түрлі болады.
Нейрондардың ең басты үш типін айырады: афференттк, қондырма (аралық, контактылық) және эфференттік. Алғашқы афференттік (рецепторлык) нейрондар биполярлы болады. Олардың ұзын тармағының ұшы тиісті шеткі мүшелерде қабылдаушы (рецепторлық) аппарат рөлін атқарады. Мұнда туған қозуды клетка денесіне жеткізеді. Ал одан әрі екінші өсінді ол қозуды жұлынға немесе сопақша миға жеткізіп, ол жерде қондырма нейронмен немесе эфферентгік нейронмен байланысқа түседі. Афференттік нейрондар орталық нерв жүйесінен тыс (жұлын ганглийлерінде, ми нервтері тұйіндерінде, т. б.) және орталық нерв жүйесінің шеңберінде де (мыс, көру темпешіктерінде) орналаса береді. Эфференттік нейрондар аксондары әдетте импульстерді орталық нерв жүйесінен түрлі шеткі мүшелерге, ұлпаларға жеткізеді (мысалы қаңқа бұлшықеттерін жабдықтайтын мотонейрондар). Бірақ, көптеген эфференттік нейрондар сигналдарды шетке бірден өздері емес, басқа, келесі нерв клеткалары арқылы жеткізеді. Мәселен, ми қыртысының моторлық зонасының моторлық, руброжұлын, ретикуложұлын және вестибуложұлын нейрондары импульстерді жұлындағы тиісті мотонейрондарға жеткізеді. Ал соңғылар оларды одан әрі мүшелерге карай бағыттайды. Вегетативтік (автономиялық) нерв жүйесінің эфференттік нейроңдары орталық нерв жүйесінен тыс, вегетативтік ганглийлерде орналасады. Аралық (қондырғы) нейрондар афференттік нейрондарды эфференттік нейрондармен байланыстырады. Саны жағынан орталық нерв жүйесіндегі клеткалардың ең көбі деп есептеледі.
Нейрондарды тудыратын эффектілері бойынша жіктеуге болады. Мысалы, қозгағыш (моторлық), сеқреторлық, трофикалық, тежеуші, қоздырушы, т. б. Кейде аксонның ұзындығына қарай қысқа, ұзын аксонды нейрондар деп те айырады.
Пішіндеріне қарай нейрондарды — пирамида тәрізді, жіп тәрізді, жұлдыз тәрізді, себет тәрізді, триангулярлық, бута тәрізді, т. б. деп те атайды.
Нерв клеткаларының қалыпты қызметтерінің іске асуында маңызды рөлді нейроглия атқарады. Нейрондарды барлық жағынан қоршай орналасқан нейроглия клеткалары (астроциттер, олигодендроциттер, т. б.) және оның өсінділері — олар үшін бір жағынан механикалық функция — тірек қызметін атқарады; екінші жағынан нерв клеткаларында электрлік изоляцияны (оқшаулауды) қамтамасыз етеді. Сондай-ақ нерв клеткаларындағы зат алмасу процесін реттеуге қатысады деп те есептеледі.
Синапс.
Бұл ұғымды ғылымға 1897 жылы ағылшын физиологы Ч. Шеррингтон енгізді. Синапс (грек. — байланыстыру, қосу, біріктіру) нерв клеткасы аксоньшың ұшын екінші нейронмен байланыстыратын морфофункциональдық құрылым.
XIX ғасырдың 60-жылдарында-ақ И. М. Сеченов клеткааралық байланыстардан тыс ен элементарлық нерв процесінің пайда болу тәсілін түсіндіру мүмкін емес деп есептеген болатын.
Нейрондар арасындағы синапстық контактылар алуан түрлі.
Олар бір-бірінен әрекет ету механизмі жағынан, клетка беткейінде
орналасу (локализациялану) ерекшеліктеріне қарай, функциональдық бағыты (қоздырушы немесе тежеуші) тұрғысынан, туған тиісті белсенділік аяқталғаннан соңғы модуляцияға қабілеті жағьшан, т. б. қасиеттерінен айырмашьшықтар көрсетеді. Дегенмен синапстардың барлығына да ортақ бола алатын кұрылымдық және функциональдық жалпы қасиеттер де бар. Синапс құрылымында 1-ден,пресинапстык буынды немесе пресинапсты (көпжағдайда ол аксонның ең ақырғы тармақтарынан тұрады); 2-ден, постсинапстық буыңды немесе постсинапсты (көбінесе ол келесі нейрон денесі немесе дендрит мембранасының учаскесі); 3-ден, пресинапс пен постсинапс арасындағы болар-болмас (10—50 нм-дей болатын) синапстық саңылауды айырады. Пресинапс пен постсинапс мембраналарының бір-біріне дәл (сай) келетін учаскілерін көп жағдайда пресинапстық мембрана және субсинапстық мембрана деп атайды.
Аксон талшыктарының клетка денесінде түзетін синапстарын аксосоматикалық, деп олардың дендриттермен түзетін синапстарын — аксодендриттік деп атайды. Бұлардан басқа аксонның ақырғы тармақтарын (терминальдарын) өзара байланыстыратын аксо-аксо налъдық, әр түрлі нейрондар дендритгерінің арасында дендро-дендриттік, нейрон денелерін бір-бірімен байланыстыратын сомато-сомдтикалық және клетка денесі мен дендриттер арасында сомато-дендриттіксинапстар да болады.
Пресинапс ұштары әртүрлі пішінді (түйме, сына, себет, шытра, тор тәрізді, т. б.) болып келеді. Нерв жүйесіндегі нейронаралық синапстардан басқа шеткі нерв-бұлшықет синапстарьн (ақырғы пластинкаларды) айырады. Бір нерв талшығының тарамдалған ұштары толып жаткан басқа клеткалардың денесінде не дендриттерінде 10000-ға дейін синапстар түзе алады, сондай-ақ бір нейронның денесі мен дендриттерінде көптеген басқа нейрондар түзетін мыңдаған синапстар жатады.
Синапстар арқылы қозу өтудің екі механизмін айырады: электрлік және химиялық. Нервтен етке қозу өтуде химиялық заттардың қатысуы мүмкін екендігіне алғаш назар аударғандардың бірі И. М. Сеченов болды. А. Ф. Самойлов (1925) нейронаралык синапстар арқылы қозу етуде де химиялық заттар қатысады деп болжау жасаған. Кейін, 1934 жылы К. Быковтың лабораториясында А. В. Кибяков иттің мойын симпатикалық нервін тітіркендіріп, сол нерв жабдықтайтын жоғары мойын түйінінің тамырларындағы сүйықтықты жинап алып, енді оған қайта жібергенде ондағы нерв клеткаларында қозу туғандығын байқады. Австрия фармакологі Леви ХХ-ғасырдың 20-жылдарында адреналинге ұқсас зат пен ацетилхолиннің симпатикалық және парасимпатикалық әсерлерді жүрекке жеткізудегірөлін көрсететін тәжірибелер жасады.
Кейінгі кезде жүргізілген микроэлектродтық зерттеулер арқасында қозу өткізу тәсілі жағынан алғанда синапстардың үш типінің бар екендігі белгілі болып отыр. Еңкөп тарағаны химиялық синапстар, содан соң — электрлік синапстар, ең азы — аралас синапстар. Электрлік механизмді синапстар қарапайым нерв жүйесі бар жануарларда басым болады. Жоғары сатылы организмдерде эмбриональдық дамудың барысында олар біртіндеп азая береді. Синапстардың қай механизм арқылы қозу еткізетіндігі көп жағдайда синапстық саңылаудың диаметріне байланысты болады. Химиялық синапстарда оның шамасы 10—20 нм-дей. Пресинапстық ток саңылауға жеткенде ондағы төменгі кедергіге байланысты жайылып, күші кемиді де, субсинапстық мембранаға оның небәрі 0,0001— дей бөлігі етеді. Ал бұл онда мембраналық потенциалдың қозу тууға жететіндей өзгерістерін жүргізе алмайды. Сол себептен де химиялық синапстар арқылы қозу өту үшін электрлік механизм жарамайды. Бұған химиялық заттар (медиаторлар) қатысады. Медиаторлар аксонның ең соңғы майда тармақтарының (терминальдарының) біраз кеңейген ұштарыңдағы диаметрі 30—50 нм шамасында болатын көпіршіктерде орналасады. Нерв талшығының бойымен келген импульстің әсерінен пресинапс мембранасындағы кальций каналдарының өткізгіштігі жоғарылайды да, ішке қарай өтетін Са иондарының ағыны күшейеді, везикульдер маңындағы кальций иондарының концентрациясы артады.