Жоспары:
1.Сэнгер әдісінің шығу тарихы
- «Тізбекті үзу» әдісінің маңызы
Лекция мәтіні:
1.ДНҚ-ның нуклеотидтер қатарын анықтаудың екінші тәсілін Нобель сыйлығының екі дүркін лауреаты атанған ағылшынның атақты ғалымы Ф. Сэнгер ұсынды. Сэнгер әдісінің көп жақтары Максам-Гильберт әдісімен ұқсас болғанымен оның принципінің айырмашылығы бар — Сэнгер бойынша нуклеотидтер қатарын анықтау ДНҚ-полимераза яғни ДНҚ-ны ажырататын емес, керісінше оны синтездейтін фермент көмегімен іске асады. Мұнда ген үзіндісінің өзі емес, ДНҚ-полимеразаның көмегімен синтезделетін ДНҚ молекуласы зерттеледі. Ферменттің әсерімен ұзындығы әр түрлі ДНҚ молекулалары синтезделеді, олардың 5’— ұштары бірдей, ал 3’— ұштары төрт азоттық негіздің (А, Т, Г немесе Ц) бірі бойынша әр түрлі.
Сэнгер әдісінде нуклеотидтер қатары белгісіз ДНҚ сегментін М1З бактериофагының ДНҚ-сынан құрастырылған арнайы векторға енгізеді. Біз бұл фагтың векторлық молекула ретінде ыңғайлы айырмашылығын жоғарыда қарадық, атап айтқанда генді жалғыз тізбекті күйде тасымалдай алады. Мұндай тізбектің нуклеотидтер қатарын анықтау оңай. М1З бактериофагының ДНҚ-сы қос тізбекті күйде де бола алады. Осындай фагтың негізінде бірнеше векторлар құрастырылды. Фагтың репликациясы үшін оның геномының маңызды емес аймағына шамамен ондаған әр түрлі рестриктазалар үзе алатын полилинкер жалғанады. Полилинкердің қатарына 17 н. ж. құралған тізбек жалғанады. Осындай векторды рестриктазалардың бірімен үзгеннен кейін оны талдауға алынған және сол рестриктазамен үзілген ДНҚ бөлігімен біріктіреді. Мұнда ол вектордың 17 мүшелік тізбегімен қатар орналасады. Міне осындай рекомбинантты ДНҚ-ны бактерия клеткасына енгізіп, одан жалғыз тізбекті ДНҚ-сы бар фагтарды алады. Енді фагтан ДНҚ-ны айырьш, оны талдауға кірісуге болады.
2.Сэнгер әдісі «тізбекті үзу» әдісі деп аталады. Яғни ДНҚ-полимераза арқылы түзілетін комплементарлы ДНҚ-ның синтезі Максам-Гилберт әдісіне сәйкес әрбәр негізде тоқтайды. (үзіледі).Ал, ДНҚ-полимераза үшін ашытқы (праймер) керек, ол үші фектордың 17-мүшелік тізбегіне комплементарлы олигонуклеотид синтезделеді.
Егер олигонуклеотид-ашытқыны матрицалық ДНҚ-мен байланыстырып, ДНҚ-полимераза мен дезоксинуклеозид-трифосфаттарды қосса, онда ДНҚ бөлігінің толық көшірмесін ала аламыз. Мұнда әрбір келесі азоттық негіз өсіп жатқан тізбектің 3’— ұшының гидроксил тобына жалғанатынына мән беру керек. Сэнгер әдісі үшін ДНҚ бөлігінің толық көшірмесі емес, оның үзінділері қажет.
Матрица-ашытқы комплексін төрт бөлікке бөледіде, олардың әрқайсысына тізбектің 3’— ұштары азоттық негіздерініңаналогтары — дидезоксинуклеозидтрифосфаттарды (ddNТФ) қосады. Мұндай дидезоксинуклеозидтердің рибоза қалдығының көміртегі атомдарында гидроксил тобы болмайды, сондықтан өсіп жатқан 3’— ұшының синтезін белгілі негізден кейін тоқтайды. Мысалы, тимидинмен аяқталатын ДНҚ фрагменттерін алу үшін ортаға дидезокситимидинтрифосфатты, тізбекті аденозин бойынша үзу үшін дидезоксиаденозинтрифосфатты және т.с.с. қосады. Әрине, төрт бөліктің әрқайсысына қалыпты дезоксинуклеозидтрифосфаттардың бірін (dТТФ, dАТФ,(dЦТФ және dГТФ) қосу керек. Нәтижесінде ұзындығы әр түрлі, бірақ 3’— ұштары бірдей олиго — және полинуклеотидтер жиынтығын алады. Олардың электрофореграммасын радиоаутография әдісі арқылы оқып, геннің нуклеотидтер қатарын анықтайды.
Максам-Гилберт және Сэнгер әдістеріе қолданып, РНҚ тізбегінің нуклеотидтер қатарын да анықтауға болады. Бұл әдістердің осы заманғы молекулалық биология мен гепетика үшін маңызы зор. Оларды пайдалану арқасында қазіргі кезде көптеген вирустар, бактериялар және олардың плазмидалық элементтері геномдарының алғашқы құрылымы анықталды. Нуклеотидтері белгілі гендердің ұзындығы 6 млн. асьш кетті. Қазіргі кезде кейбір митохондрия мен хлоропластардың ДНҚ құрылымы толық белгілі болды, олардың ДНҚ молекуласының ұзындығы 150 н. ж. асып түсті.
Осы заманғы генетикалық инженерияның жетістігін адам геномына инструменттік шабуыл басталуынан байқауға болады. Адам ДНҚ-сының нуклеотидтер қатарын анықтауды АҚШ ғалымдары тікелей қолға алуда. Адамның ДНҚ-сы 3 млрд. нуклеотидтерден құралған, сондықтан олардың орналасу қатарын анықтау көп қаражатты және көптеген ғылыми генетикалық зертханалардың бірігіп жұмыс істеуін керек ететін аса күрделі іс болып саналады. Кейбір ғалымдардың есебі бойынша 3—6 млрд. доллар (әр нуклеотидке 1 — 2 доллар) жұмсап, адам геномының проектісін 15—20 жыл аралығында шешуге болады. Қазіргі кезде нуклеотидтерді анықтау жылдамдығын көбейтіп, жұмсалатын қаржыны азайту (әр нуклеотидке 50 цент жұмсау) жолдары талқылануда. Мысалы, Сэнгер бойынша нуклеотидтер қатарын анықтаудың автоматты әдістері құрастырылды, мұндай жаңа автоматты приборлар адам геномының оқылуын жеңілдетеді деп күтілуде.